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Abstract. This paper focuses on programmable matter (PM), paying attention to anisotropic 
material behavior in shape memory alloys (SMA) and its applications within kinetic systems 
and architecture (KA), using parametric modeling code structures for subsequent 
architectural application development. Updates were done optimizing and expanding code 
functionality. Utilizing agile software development strategies, we derived new code that 
expands Grasshopper and Kangaroo’s software functionality (SF) concerning digital design 
and previewing digital fabrication. We evaluated previous and optimized code using code 
correctness (CC) indicators as defined by Davis (2013) and hereby present its results so that 
further research and development projects concerning PM and molecular scale material 
design (MD) can be speculated upon and discussed. These could be used as basis for future 
research regarding both the theoretical and building application scopes of integrated material 
design, where simulation is used  as a means of quasi-fabrication of kinetic architecture. 
 
Keywords. Programmable matter; kinetic systems; digital simulation; flexinol; parametric 
modeling. 

Introduction 
In order to simulate the material’s programmed behavior to properly predict critical 
function, actuation and physical properties, Grasshopper (GH) + Kangaroo was used to 
bridge the design-simulation tool’s workflow in a single stream and to optimize and 
protocolize a smoother and more fluent decision making process. What this paper 
proposes is that, using designs built, tested and published by Chun Yi Wu on 
Youtube.com1

                                                 
1 Original video available at: 

 and laboratory results from Dynalloy’s Flexinol published literature to 
model macroscopic manifestation and mechanical phenomena, it is possible to 
approximate reality at the architectural scale. This way building an approach to design 
that is based and evolved not just within the 4th dimension (time), but actually using it to 
the designer’s advantage thus making it possible and reliable to create complex self-
assembly, self-organizing and intelligent kinetic systems based in PM simulation 
modeling instead of animation or static CAD modeling. We ask further questions about 
performance, code correctness and re-usability concerning previously developed PM 
based, digital simulations that replicate physical models and simulations done by Chun 

https://www.youtube.com/watch?v=1FoaIgKY01U&index=1&list=PLmnBQW0k0x1Gy19QXR9ZRmyPYJ-YzP0tT&t=387s   
(retrieved: 31/03/2017)  
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Yi Wu in which we used macroscopic mechanical data (of Flexinol) from Dynalloy [1], 
an industry SMM manufacturer. 

Material Design 
During the past ten (10) years, attempts to program not only software and machines, but 
matter itself, have defined the convergence of material science and the design disciplines, 
henceforth outlining a boundary-less, transdisciplinary continuum that suggests that, in 
the future, we might be able to design architectural structures emerging from molecular 
(10-6) toward building-size scales (102), hence outlining what we consider to be material 
design (MD). MD is, within material science, the process of configuration, 
reconfiguration or modification, through programming or other methods like physical 
form finding, of any material to meet a certain set of criteria ranging from macroscopic 
manifestation to emergent behavior properties (Montás, 2015, 290). In this manner, it is 
close to what programmable matter is defined as “the science, engineering, and design of 
physical matter that has the ability to change form and/or function (shape, density, 
moduli, conductivity, color, etc.) in an intentional, programmable fashion.” (Thomas, 
Tibbits, Banning, 2014, 3) 
 
As Casey Reas (2006) has established, “Emergence refers to the generation of structures 
that are not directly defined or controlled. Instead of overtly determining the entire 
structure, I write simple programs that define the interactions between elements. 
Structure emerges from discrete movements of each element as it modifies itself in 
relation to its environment.”  
 
Following this principle, we wrote simple programs to define Flexinol behavior under 
different temperatures and to various geometric definitions. The emerging structure 
depends of the initial geometry and force arrangement, but the subroutines used stayed 
the same with, in principle, little changes made to adapt them to different situations and 
were therefore reusable. 

Agile Software Development Applied to Parametric Modeling 
 
In February 2001, a group of concerned software development professionals and 
representatives from different programming “schools of thought” who were all 
sympathetic to the need for an alternative to documentation driven, heavyweight software 
development processes held a gathering to see how to overcome the “rigidity” and low 
efficiency of what is commonly known in programming as the waterfall method, which 
was considered hindering by this group of software developers due to its overly rigid 
planning stages, bureaucratic structure and front-loading data modeling (Beck et al., 
2001, 1). 
 
Out of this reunion came out what is now known as the “Manifesto for Agile Software 
Development”, convened and signed by Kent Beck and eighteen (18) other software 
engineers and developers. This manifesto predicated four (4) main tenets that countered 
what at the time was the hegemonic approach to the practice of software architecture and 



engineering.From these core canons, twelve (12) working principles were drawn, out of 
which two (2) in particular directly address and define our team’s developing method: 
 
"...7) Working software is the primary measure of progress. 
 
12) At regular intervals, the team reflects on how to become more effective, then tunes 
and adjusts its behavior accordingly.” (Beck et al., 2001) 
 
These tenets played a pivotal role in the programming community’s shift in the early 
2000’s towards the advent of better built, more flexible, changeable and interchangeable 
code, applications and so forth as Davis has noted (2013).  
Following these guidelines and for this paper we built software tools that can help 
designers with little knowledge about SMA or programmable matter to approximate 
material behavior and design principles. Henceforth, technical data  informed the 
employed methods and workflow selection. 

Methodology to Design a Workflow Framework  
 
Following Daniel Davis, we argue that using visual programming to bypass what is 
commonly known as the edit-compile-run loop (Davis, 2013, 159) is a relatively efficient 
way for visualizing algorithms working on demand and applying them to specific 
circumstances thus circumventing the aforementioned loop and hereby bypassing time 
consuming processes that hinder intuitive design decisions that mostly happen on the fly 
(Montás, 2016, 381), which is consistent with Schön’s reflective practice and also shares 
a similar pattern of iterative prototyping as well present in agile development  
(Davis, 2013, 66). 
 
Applying this code writing and analysis method has also shown to be instrumental in 
changing the stages of Raviv et al’s approach to programmable matter described as a 
design-fabrication-simulation workflow in their paper “Active Printed Materials for 
Complex Self-Evolving Deformations” in Nature magazine (2015, 1), whose order we 
aim to alter into becoming a design-simulation-fabrication workflow  
(Montás, 2016, 378), which is shown here: 
 

Combining Imperative + Declarative Methods for Parametric Modeling 
  
Programming languages normally available to architects are usually classified in two (2) 
main paradigms: imperative and declarative programming (Davis, 2013, 62) (see figure 
1), each with their own pros and cons, depending on a particular programmer’s taste and 
skills in order to be selected for use.   
 



 
Figure 1 Davis, Daniel (2013, 62), Programming languages architects use categorized by Appleby and VandeKopple's 
(1997, xiv) taxonomy of programming languages. 

Whereas declarative, visual code languages are excellent at bypassing the edit-compile-
run loop which helps when you are consumed in intuitive design tasks and modeling, 
however, in other scenarios and situations, imperative programming has several 
advantages when compared to the declarative paradigm. One of these is that it supports 
structured code more elegantly than declarative, thus being more useful for automated 
tasks and repetitive event handling, hence event driven programming. It can be 
implemented to realize accurate yet time consuming or “boring” tasks, letting the 
designer worry about more metaphysical aspects (Montás, 2016).  
Combining object oriented (OOP) and visual programming paradigms, exploiting 
Grasshopper’s ability to embed python code in it’s visual code, we proceeded to write a 
Python script in the Grasshopper interface that lets you write automated object oriented 
programming (OOP) chunks and integrate them into a GH definition as components that 
have inputs and outputs. Imperative programming is used, in this context, to automate the 
material's macroscopic, mechanical behavior like rigidity, rest length, stiffness, stress 
and, in this particular case, Flexinol’s heating and cooling resultant pull-forces, 
proportional to its diameter in the C.G.S. measurement system (grams). These 
characteristics inherent in the material, although they can be modeled using data-flow 
(declarative paradigm), hold better and are more reusable if implemented in a component 
that reproduces the material’s laboratory tested mechanical data. 
 

Expanding GH and Kangaroo’s Software Functionality: Pull Force 
Calculation Subroutine 
 
As a part of these experimental cases, we proceeded to reverse engineer, formalize and 
program a scalar formula that integrates proportions between the material’s diameter and 
pull force, in accordance with the Dynalloy Technical Data Table [1], and hereby outputs 



a scalar resultant ready to be given vector format. This was realized by writing a 
subroutine in Grasshopper’s Python editor and using the Unit Vector components to turn 
the values into proper vector form, therefore expanding GH’s SF by producing a priorly 
non-existent component called SMM NiTi Flexinol Mecca.  The general formula was 
implemented using the following simplified form: 

�2(ax2)� ∗ c = F(x) (1) {Equation} 

Where "a" is the nominal term, “x” is equal to the wire’s diameter, "c" is a constant equal 
to 100  and "F(x)" equals the resultant pull force. Setting the "a" term to 71 gives the pull 
force for heating actuation and setting it to 29 gives the cooling actuation pull force, is 
shown below for heating: 

(2(71x2)) ∗ 100 = F(x) (1) {Equation} 

And cooling: 

(2(29x2)) ∗ 100 = F(x) (1) {Equation} 

The simplified equation can also be expressed in algebraic form as follows: 

(ax2 + ax2) ∗ c = F(x) (2) {Equation} 

For heating: 

(71x2 + 71x2) ∗ 100 = F(x) (2) {Equation} 

And cooling: 

(29x2 + 29x2) ∗ 100 = F(x) (2) {Equation} 

This function allowed us to make an approximate, but correct simulation to an error 
margin within 0.25% for small diameters (0.028mm) and 3.60% for bigger ones 
(0.51mm) when compared to mechanical macroscopic data observed in laboratory 
experiments, published by Dynalloy. The results from this simple operation were then 
used to tell actives vectors points in any such given geometry how to behave realistically 
in reaction to the material’s stiffness factor, which in the case of Ni-Ti alloys and 
Flexinol in particular, is of about 172 MPa while heating (deploying or shape A to B) and 
70 MPa while cooling (retracting or shape B to A). A temperature conditional statement 
has been also added to control one way (shape A to B) and two way2

                                                 
2 The one way and two way memory effect are characteristics of certain SMA by which to, according to their chemical 
configuration or “recipe”, undergo either a one way (going from shape A to B) or two way  shape memory martensitic 
phase transitions (shape change), which equals going from shape A to B and back to A. 

 (shape A to B, then 
B to A) shape memory effect behavior that acts as a boolean to toggle between states at 
will, the temperature threshold were set to 90c° which is a Flexinol standard commercial 
wire’s martensitic phase temperature (the other one is 70c°). 



 

 
Figure 2.Montás, Baquero, Giannopoulou. Mechanical data comparison between Dynalloy’s laboratory tests and our 
team’s Python implemented function. Diameters are shown in millimeters and forces in grams. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Diameter Size 
(mm) 

Pull Force (grams) Pull Force Python 
Function 
(grams) 

Cooling 
Deformation 
Force (grams) 

Cooling Deformation 
Force Python Function 
(grams) 

0.03 8,90 8,88 3,60 3.63 

0.04 20,00 20,50 8,00 8,38 

0.05 36,00 35,50 14,00 14,50 

0.08 80,00 82,02 32,00 33,50 

0.10 143,00 142,00 57,00 58,00 

0.13 223,00 239,98 89,00 98,02 

0.15 321,00 319.5 128,00 130,50 

0.20 570,00 568,00 228,00 232,00 

0.25 891,00 887,50 356,00 362,50 

0.31 1280,00 1364,62 512,00 557,38 

0.38 2004,00 2050,48 802,00 837,52 

0.51 3560,00 3693,42 1424,00 1508,58 

Table 1.Montás, Baquero, Giannopoulou. Mechanical data comparison between Dynalloy’s laboratory tests and our 
team’s Python implemented function. 

Conceptual Model of the System  
To define a simplified representation of a system, approximations are introduced to 
reduce complexity, computational requirements and solution time. The model’s time span 
is dynamic, so  behaviour changes over time. The changes over time are represented as 
both discrete events and continuous ones.  
The below case studies are experiments in order to obtain a better understanding of the 
system. The Kangaroo physics engine is used  to visualize the emergence of possible 
geometrical configurations of  SMA under  specific temperature changes  to arrive at 
complex self-assembly, self-organizing and intelligent kinetic systems based in PM 
simulation modeling.    



 

 

Case Studies 
In order to find a way to prove our OOP subroutine in realistic approximations to actual 
physical models using SMA, we selected two (2) designs built, tested and published by 
Chun Yi Wu on Youtube.com. These are the following: “hexagonal composition” and 
“membrane composition”.  

Hexagonal Composition 
 In order to do the simulation of the physical behaviour of the chosen geometrical 
configuration, we used Rhinoceros to set up the initial conditions of twelve (12) flat 
hexagons with their radial lines and put them as input lines and points for the GH 
definition. Using the Kangaroo physics engine, we applied the pull force calculation 
subroutine to the actuated lines while the rest kept their original length and rigidity 
unchanged, producing a dynamic tensegrity system. Changing the temperature we 
recorded the movement. At less than 90° the hexagons kept closed, at more than 90° they 
opened as seen in the stop motion sequence below. (See figure 3). 
 

 
 



 
Figure 3.Montás, Baquero, Giannopoulou. Hexagonal composition comparing physical model (above) and simulation 
actuation (below). 

2. Membrane Composition 
 
To simulate Wu’s membrane composition, after trying a range of pull components in GH, 
we settled for a vector field matrix approach, an idea borrowed from material science 
used to describe how materials bend and deform under forces acting upon them. This idea 
tells us that a field is like a piece of cloth covering an area of space with a value assigned 
at each point in its surface area (in this case, the membrane). When that value takes the 
form of a vector, it becomes a vector field and, if we interlock them tracing a lattice all 
over its surface area (in this case a two -2- dimensional one), this field becomes 
controllable as a whole with a matrix-like vector definition: a combination of values 
produces a resultant form. We implemented the python pull force subroutine to apply the 
SMA exerted forces to produce membrane actuation distributed into X, Y, Z unit vectors. 

 
 



 
Figure 4. Montás, Baquero, Giannopoulou. Membrane composition comparing physical model and simulation 
actuation. 

Conclusion 
 
The foreshown experiments make the case for possible, contingent and creative SMA 
material applications that can be used to ameliorate architectural spaces and even 
entertain the notion of scaling them up to the building scale by conceiving material 
matrices that combine SMA with other more structurally implementable materials. We 
have expanded SF in GH to produce a tool that architects can use in their design 
strategies to address KA and PM applications and projects. Next is a set of questions that 
aim to evaluate parametric modeling and its effectiveness (Davis, 2013) while also 
serving as a benchmark for qualitatively measuring code correctness (CC):   
 
Functionality: Are all the modeling (and coding) tasks able to be performed by every 
programming method? Yes, they can be done by both declarative and imperative 
programming editors and languages, yet, the tasks are better handled by imperative if 
repetitive and exponential and by declarative if more intuitive and ad hoc.  
 
Correctness: Do programs do what is expected? Mostly, Yes, with some delays. In the 
case of the membrane composition, some vectors showed an unexplained malfunction. 
Our a priori assumption is that the aforementioned lacks polishing. On the other hand, the 
OOP code worked as expected and results approximated the physical model. 
 
Ease of use: Are the modeling interfaces easy to use? Not established as a sure fact, 
lacking group experiments to confirm, but it appears to be the case.  Generally they are 
easy to engage, but it could be easy to get disorganized with many connections. It is good 
practice to keep notes to remember functionalities. 
 
Construction time: How long did the respective models take to build? Not measured.  



 
Lines of Code: How verbose were the various programming methods? The hexagonal 
composition was able to be built using relatively few components and code lines, but in 
the membrane composition case, the definition was substantially more verbose due to the 
vector field approach selected. 
 
Latency: How quickly did code changes become geometry? The interactivity exhibited is 
considered sufficient for these models specifically. More complex models should see 
their interactivity decrease proportionally. 
 
These conclusions clearly indicate that GH and Kangaroo, when combined with Python 
scripting language, which embeds imperative within declarative programming, make up a 
reliable method to design PM based kinetic systems and applications which therefore 
represents a step forward in this direction. While group experiments can enlarge our 
understanding of how to model these complex kinetic systems, they remain a future 
endeavor in the path of revealing if parametric modeling is able to be broadly 
disseminated to address PM in the wider discipline of architecture without resorting to 
engineering specialists, at least in the design stages of a project. 

What Lies Ahead 
 
We need to define a parametric model method that effectively reconciles molecular and 
building scales, hereby achieving multi-scalar material modeling. We are confident that 
the combination of data-flow and OOP (declarative and imperative) can bring about 
parametric models that can do this. Every paper we have known about examines either 
microscopic or macroscopic behavior models. For example, Otsuka and Wayman (1998) 
explain SMA's microscopic structure mathematically, yet macroscopic behavior is left to 
explanations with mechanical equations and matrices but no reconciliation with its 
subatomic theory. We are looking for ways to try to reconcile both molecular (10 -6) and 
building-size scales (10 2) yet we are aware that this is a current and difficult conundrum 
in physics and hope to contribute to or learn from the situation in that discipline and 
advance our work on programmable matter and material design altogether. 
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