
Parametric Modeling Implementation for Kinetic Systems
Simulation:

Programmable Matter Matters

Nelson Montás 1, Pablo Baquero2, Effimia Giannopoulou3
1ESARQ-UIC, Dominican Republic,2,3ESARQ-UIC, Faberarium, Colombia, Greece
1https://narchitecture.wordpress.com/, 2, 3www.faberarium.org,
1arq.montas@gmail.com, 2paniba@faberarium.org 3efeminno@faberarium.org

Abstract. This paper focuses on programmable matter (PM), paying attention to anisotropic
material behavior in shape memory alloys (SMA) and its applications within kinetic systems
and architecture (KA), using parametric modeling code structures for subsequent
architectural application development. Updates were done optimizing and expanding code
functionality. Utilizing agile software development strategies, we derived new code that
expands Grasshopper and Kangaroo’s software functionality (SF) concerning digital design
and previewing digital fabrication. We evaluated previous and optimized code using code
correctness (CC) indicators as defined by Davis (2013) and hereby present its results so that
further research and development projects concerning PM and molecular scale material
design (MD) can be speculated upon and discussed. These could be used as basis for future
research regarding both the theoretical and building application scopes of integrated material
design, where simulation is used as a means of quasi-fabrication of kinetic architecture.

Keywords. Programmable matter; kinetic systems; digital simulation; flexinol; parametric
modeling.

Introduction
In order to simulate the material’s programmed behavior to properly predict critical
function, actuation and physical properties, Grasshopper (GH) + Kangaroo was used to
bridge the design-simulation tool’s workflow in a single stream and to optimize and
protocolize a smoother and more fluent decision making process. What this paper
proposes is that, using designs built, tested and published by Chun Yi Wu on
Youtube.com1

1 Original video available at:

 and laboratory results from Dynalloy’s Flexinol published literature to
model macroscopic manifestation and mechanical phenomena, it is possible to
approximate reality at the architectural scale. This way building an approach to design
that is based and evolved not just within the 4th dimension (time), but actually using it to
the designer’s advantage thus making it possible and reliable to create complex self-
assembly, self-organizing and intelligent kinetic systems based in PM simulation
modeling instead of animation or static CAD modeling. We ask further questions about
performance, code correctness and re-usability concerning previously developed PM
based, digital simulations that replicate physical models and simulations done by Chun

https://www.youtube.com/watch?v=1FoaIgKY01U&index=1&list=PLmnBQW0k0x1Gy19QXR9ZRmyPYJ-YzP0tT&t=387s
(retrieved: 31/03/2017)

http://www.faberarium.org/�
mailto:arq.montas@gmail.com�
mailto:paniba@faberarium.org�
mailto:efeminno@faberarium.org�
https://www.youtube.com/watch?v=1FoaIgKY01U&index=1&list=PLmnBQW0k0x1Gy19QXR9ZRmyPYJ-YzP0tT&t=387s�

Yi Wu in which we used macroscopic mechanical data (of Flexinol) from Dynalloy [1],
an industry SMM manufacturer.

Material Design
During the past ten (10) years, attempts to program not only software and machines, but
matter itself, have defined the convergence of material science and the design disciplines,
henceforth outlining a boundary-less, transdisciplinary continuum that suggests that, in
the future, we might be able to design architectural structures emerging from molecular
(10-6) toward building-size scales (102), hence outlining what we consider to be material
design (MD). MD is, within material science, the process of configuration,
reconfiguration or modification, through programming or other methods like physical
form finding, of any material to meet a certain set of criteria ranging from macroscopic
manifestation to emergent behavior properties (Montás, 2015, 290). In this manner, it is
close to what programmable matter is defined as “the science, engineering, and design of
physical matter that has the ability to change form and/or function (shape, density,
moduli, conductivity, color, etc.) in an intentional, programmable fashion.” (Thomas,
Tibbits, Banning, 2014, 3)

As Casey Reas (2006) has established, “Emergence refers to the generation of structures
that are not directly defined or controlled. Instead of overtly determining the entire
structure, I write simple programs that define the interactions between elements.
Structure emerges from discrete movements of each element as it modifies itself in
relation to its environment.”

Following this principle, we wrote simple programs to define Flexinol behavior under
different temperatures and to various geometric definitions. The emerging structure
depends of the initial geometry and force arrangement, but the subroutines used stayed
the same with, in principle, little changes made to adapt them to different situations and
were therefore reusable.

Agile Software Development Applied to Parametric Modeling

In February 2001, a group of concerned software development professionals and
representatives from different programming “schools of thought” who were all
sympathetic to the need for an alternative to documentation driven, heavyweight software
development processes held a gathering to see how to overcome the “rigidity” and low
efficiency of what is commonly known in programming as the waterfall method, which
was considered hindering by this group of software developers due to its overly rigid
planning stages, bureaucratic structure and front-loading data modeling (Beck et al.,
2001, 1).

Out of this reunion came out what is now known as the “Manifesto for Agile Software
Development”, convened and signed by Kent Beck and eighteen (18) other software
engineers and developers. This manifesto predicated four (4) main tenets that countered
what at the time was the hegemonic approach to the practice of software architecture and

engineering.From these core canons, twelve (12) working principles were drawn, out of
which two (2) in particular directly address and define our team’s developing method:

"...7) Working software is the primary measure of progress.

12) At regular intervals, the team reflects on how to become more effective, then tunes
and adjusts its behavior accordingly.” (Beck et al., 2001)

These tenets played a pivotal role in the programming community’s shift in the early
2000’s towards the advent of better built, more flexible, changeable and interchangeable
code, applications and so forth as Davis has noted (2013).
Following these guidelines and for this paper we built software tools that can help
designers with little knowledge about SMA or programmable matter to approximate
material behavior and design principles. Henceforth, technical data informed the
employed methods and workflow selection.

Methodology to Design a Workflow Framework

Following Daniel Davis, we argue that using visual programming to bypass what is
commonly known as the edit-compile-run loop (Davis, 2013, 159) is a relatively efficient
way for visualizing algorithms working on demand and applying them to specific
circumstances thus circumventing the aforementioned loop and hereby bypassing time
consuming processes that hinder intuitive design decisions that mostly happen on the fly
(Montás, 2016, 381), which is consistent with Schön’s reflective practice and also shares
a similar pattern of iterative prototyping as well present in agile development
(Davis, 2013, 66).

Applying this code writing and analysis method has also shown to be instrumental in
changing the stages of Raviv et al’s approach to programmable matter described as a
design-fabrication-simulation workflow in their paper “Active Printed Materials for
Complex Self-Evolving Deformations” in Nature magazine (2015, 1), whose order we
aim to alter into becoming a design-simulation-fabrication workflow
(Montás, 2016, 378), which is shown here:

Combining Imperative + Declarative Methods for Parametric Modeling

Programming languages normally available to architects are usually classified in two (2)
main paradigms: imperative and declarative programming (Davis, 2013, 62) (see figure
1), each with their own pros and cons, depending on a particular programmer’s taste and
skills in order to be selected for use.

Figure 1 Davis, Daniel (2013, 62), Programming languages architects use categorized by Appleby and VandeKopple's
(1997, xiv) taxonomy of programming languages.

Whereas declarative, visual code languages are excellent at bypassing the edit-compile-
run loop which helps when you are consumed in intuitive design tasks and modeling,
however, in other scenarios and situations, imperative programming has several
advantages when compared to the declarative paradigm. One of these is that it supports
structured code more elegantly than declarative, thus being more useful for automated
tasks and repetitive event handling, hence event driven programming. It can be
implemented to realize accurate yet time consuming or “boring” tasks, letting the
designer worry about more metaphysical aspects (Montás, 2016).
Combining object oriented (OOP) and visual programming paradigms, exploiting
Grasshopper’s ability to embed python code in it’s visual code, we proceeded to write a
Python script in the Grasshopper interface that lets you write automated object oriented
programming (OOP) chunks and integrate them into a GH definition as components that
have inputs and outputs. Imperative programming is used, in this context, to automate the
material's macroscopic, mechanical behavior like rigidity, rest length, stiffness, stress
and, in this particular case, Flexinol’s heating and cooling resultant pull-forces,
proportional to its diameter in the C.G.S. measurement system (grams). These
characteristics inherent in the material, although they can be modeled using data-flow
(declarative paradigm), hold better and are more reusable if implemented in a component
that reproduces the material’s laboratory tested mechanical data.

Expanding GH and Kangaroo’s Software Functionality: Pull Force
Calculation Subroutine

As a part of these experimental cases, we proceeded to reverse engineer, formalize and
program a scalar formula that integrates proportions between the material’s diameter and
pull force, in accordance with the Dynalloy Technical Data Table [1], and hereby outputs

a scalar resultant ready to be given vector format. This was realized by writing a
subroutine in Grasshopper’s Python editor and using the Unit Vector components to turn
the values into proper vector form, therefore expanding GH’s SF by producing a priorly
non-existent component called SMM NiTi Flexinol Mecca. The general formula was
implemented using the following simplified form:

�2(ax2)� ∗ c = F(x) (1) {Equation}

Where "a" is the nominal term, “x” is equal to the wire’s diameter, "c" is a constant equal
to 100 and "F(x)" equals the resultant pull force. Setting the "a" term to 71 gives the pull
force for heating actuation and setting it to 29 gives the cooling actuation pull force, is
shown below for heating:

(2(71x2)) ∗ 100 = F(x) (1) {Equation}

And cooling:

(2(29x2)) ∗ 100 = F(x) (1) {Equation}

The simplified equation can also be expressed in algebraic form as follows:

(ax2 + ax2) ∗ c = F(x) (2) {Equation}

For heating:

(71x2 + 71x2) ∗ 100 = F(x) (2) {Equation}

And cooling:

(29x2 + 29x2) ∗ 100 = F(x) (2) {Equation}

This function allowed us to make an approximate, but correct simulation to an error
margin within 0.25% for small diameters (0.028mm) and 3.60% for bigger ones
(0.51mm) when compared to mechanical macroscopic data observed in laboratory
experiments, published by Dynalloy. The results from this simple operation were then
used to tell actives vectors points in any such given geometry how to behave realistically
in reaction to the material’s stiffness factor, which in the case of Ni-Ti alloys and
Flexinol in particular, is of about 172 MPa while heating (deploying or shape A to B) and
70 MPa while cooling (retracting or shape B to A). A temperature conditional statement
has been also added to control one way (shape A to B) and two way2

2 The one way and two way memory effect are characteristics of certain SMA by which to, according to their chemical
configuration or “recipe”, undergo either a one way (going from shape A to B) or two way shape memory martensitic
phase transitions (shape change), which equals going from shape A to B and back to A.

 (shape A to B, then
B to A) shape memory effect behavior that acts as a boolean to toggle between states at
will, the temperature threshold were set to 90c° which is a Flexinol standard commercial
wire’s martensitic phase temperature (the other one is 70c°).

Figure 2.Montás, Baquero, Giannopoulou. Mechanical data comparison between Dynalloy’s laboratory tests and our
team’s Python implemented function. Diameters are shown in millimeters and forces in grams.

Diameter Size
(mm)

Pull Force (grams) Pull Force Python
Function
(grams)

Cooling
Deformation
Force (grams)

Cooling Deformation
Force Python Function
(grams)

0.03 8,90 8,88 3,60 3.63

0.04 20,00 20,50 8,00 8,38

0.05 36,00 35,50 14,00 14,50

0.08 80,00 82,02 32,00 33,50

0.10 143,00 142,00 57,00 58,00

0.13 223,00 239,98 89,00 98,02

0.15 321,00 319.5 128,00 130,50

0.20 570,00 568,00 228,00 232,00

0.25 891,00 887,50 356,00 362,50

0.31 1280,00 1364,62 512,00 557,38

0.38 2004,00 2050,48 802,00 837,52

0.51 3560,00 3693,42 1424,00 1508,58

Table 1.Montás, Baquero, Giannopoulou. Mechanical data comparison between Dynalloy’s laboratory tests and our
team’s Python implemented function.

Conceptual Model of the System
To define a simplified representation of a system, approximations are introduced to
reduce complexity, computational requirements and solution time. The model’s time span
is dynamic, so behaviour changes over time. The changes over time are represented as
both discrete events and continuous ones.
The below case studies are experiments in order to obtain a better understanding of the
system. The Kangaroo physics engine is used to visualize the emergence of possible
geometrical configurations of SMA under specific temperature changes to arrive at
complex self-assembly, self-organizing and intelligent kinetic systems based in PM
simulation modeling.

Case Studies
In order to find a way to prove our OOP subroutine in realistic approximations to actual
physical models using SMA, we selected two (2) designs built, tested and published by
Chun Yi Wu on Youtube.com. These are the following: “hexagonal composition” and
“membrane composition”.

Hexagonal Composition
 In order to do the simulation of the physical behaviour of the chosen geometrical
configuration, we used Rhinoceros to set up the initial conditions of twelve (12) flat
hexagons with their radial lines and put them as input lines and points for the GH
definition. Using the Kangaroo physics engine, we applied the pull force calculation
subroutine to the actuated lines while the rest kept their original length and rigidity
unchanged, producing a dynamic tensegrity system. Changing the temperature we
recorded the movement. At less than 90° the hexagons kept closed, at more than 90° they
opened as seen in the stop motion sequence below. (See figure 3).

Figure 3.Montás, Baquero, Giannopoulou. Hexagonal composition comparing physical model (above) and simulation
actuation (below).

2. Membrane Composition

To simulate Wu’s membrane composition, after trying a range of pull components in GH,
we settled for a vector field matrix approach, an idea borrowed from material science
used to describe how materials bend and deform under forces acting upon them. This idea
tells us that a field is like a piece of cloth covering an area of space with a value assigned
at each point in its surface area (in this case, the membrane). When that value takes the
form of a vector, it becomes a vector field and, if we interlock them tracing a lattice all
over its surface area (in this case a two -2- dimensional one), this field becomes
controllable as a whole with a matrix-like vector definition: a combination of values
produces a resultant form. We implemented the python pull force subroutine to apply the
SMA exerted forces to produce membrane actuation distributed into X, Y, Z unit vectors.

Figure 4. Montás, Baquero, Giannopoulou. Membrane composition comparing physical model and simulation
actuation.

Conclusion

The foreshown experiments make the case for possible, contingent and creative SMA
material applications that can be used to ameliorate architectural spaces and even
entertain the notion of scaling them up to the building scale by conceiving material
matrices that combine SMA with other more structurally implementable materials. We
have expanded SF in GH to produce a tool that architects can use in their design
strategies to address KA and PM applications and projects. Next is a set of questions that
aim to evaluate parametric modeling and its effectiveness (Davis, 2013) while also
serving as a benchmark for qualitatively measuring code correctness (CC):

Functionality: Are all the modeling (and coding) tasks able to be performed by every
programming method? Yes, they can be done by both declarative and imperative
programming editors and languages, yet, the tasks are better handled by imperative if
repetitive and exponential and by declarative if more intuitive and ad hoc.

Correctness: Do programs do what is expected? Mostly, Yes, with some delays. In the
case of the membrane composition, some vectors showed an unexplained malfunction.
Our a priori assumption is that the aforementioned lacks polishing. On the other hand, the
OOP code worked as expected and results approximated the physical model.

Ease of use: Are the modeling interfaces easy to use? Not established as a sure fact,
lacking group experiments to confirm, but it appears to be the case. Generally they are
easy to engage, but it could be easy to get disorganized with many connections. It is good
practice to keep notes to remember functionalities.

Construction time: How long did the respective models take to build? Not measured.

Lines of Code: How verbose were the various programming methods? The hexagonal
composition was able to be built using relatively few components and code lines, but in
the membrane composition case, the definition was substantially more verbose due to the
vector field approach selected.

Latency: How quickly did code changes become geometry? The interactivity exhibited is
considered sufficient for these models specifically. More complex models should see
their interactivity decrease proportionally.

These conclusions clearly indicate that GH and Kangaroo, when combined with Python
scripting language, which embeds imperative within declarative programming, make up a
reliable method to design PM based kinetic systems and applications which therefore
represents a step forward in this direction. While group experiments can enlarge our
understanding of how to model these complex kinetic systems, they remain a future
endeavor in the path of revealing if parametric modeling is able to be broadly
disseminated to address PM in the wider discipline of architecture without resorting to
engineering specialists, at least in the design stages of a project.

What Lies Ahead

We need to define a parametric model method that effectively reconciles molecular and
building scales, hereby achieving multi-scalar material modeling. We are confident that
the combination of data-flow and OOP (declarative and imperative) can bring about
parametric models that can do this. Every paper we have known about examines either
microscopic or macroscopic behavior models. For example, Otsuka and Wayman (1998)
explain SMA's microscopic structure mathematically, yet macroscopic behavior is left to
explanations with mechanical equations and matrices but no reconciliation with its
subatomic theory. We are looking for ways to try to reconcile both molecular (10 -6) and
building-size scales (10 2) yet we are aware that this is a current and difficult conundrum
in physics and hope to contribute to or learn from the situation in that discipline and
advance our work on programmable matter and material design altogether.

References:

Beck, Kent, Mike Beedle, Arie van Bennekum, Alistair Cockburn, Ward Cunningham,
Martin Fowler, James Grenning, Jim Highsmith, Andrew Hunt, Ron Jeffries, Jon Kern,
Brian Marick, Robert C. Martin, Steve Mellor, Ken Schwaber, Jeff Sutherland, Dave
Thomas, “Manifesto for Agile Software Development”, pp. 1-10, February, 2001,
(https://www.google.fr/search?q=Manifesto+for+Agile+Software+Development&oq=Ma
nifesto+for+Agile+Software+Development&aqs=chrome..69i57.418j0j4&sourceid=chro
me&ie=UTF-8) retrieved: 31/03/2017.

https://www.google.fr/search?q=Manifesto+for+Agile+Software+Development&oq=Manifesto+for+Agile+Software+Development&aqs=chrome..69i57.418j0j4&sourceid=chrome&ie=UTF-8�
https://www.google.fr/search?q=Manifesto+for+Agile+Software+Development&oq=Manifesto+for+Agile+Software+Development&aqs=chrome..69i57.418j0j4&sourceid=chrome&ie=UTF-8�
https://www.google.fr/search?q=Manifesto+for+Agile+Software+Development&oq=Manifesto+for+Agile+Software+Development&aqs=chrome..69i57.418j0j4&sourceid=chrome&ie=UTF-8�

Davis, Daniel, Modelled on Software Engineering: Flexible Parametric Models in the
Practice of Architecture, School of Architecture and Design College of Design and Social
context, RMIT University, Melbourne, 2013.

Montás, Nelson, Performance Software Approaches for Kinetic Architecture:
Programmable Matter Based
Simulations, ESARQ, Universitat Internacional de Catalunya, Barcelona, 2015.

Otsuka, Kazuhiro, Marvin Clarence Wayman, Shape Memory Materials, Cambrige
University Press, 1998.

Raviv, Dan, Wei Zhao, Carrie McKnelly, Athina Papadopoulou, Achuta Kadambi, Boxin
Shi, Shai Hirsch, Daniel Dikovsky, Michael Zyracki, Carlos Olguin, Ramesh Raskar &
Skylar Tibbits, “Active Printed Materials for Complex Self-Evolving Deformations”,
Scientific Reports 4, Nature, Article number: 7422, pp. 1-8, December
2014.(http://www.nature.com/articles/srep07422) retrieved:29/11/2016.

Reas, Casey, “Process/Drawing”, Programming Cultures: Art and Architecture in the Age
of Software, Architectural Design, Wiley Academy Press, United Kingdom, 2006, pp. 27

Campbell, Thomas, Skylar Tibbits, Banning Garrett, “The Next Wave: 4D Printing and
Programming the Material World”, Atlantic Council, Washington, DC, USA, May 2014,
pp. 3
[1]http://www.dynalloy.com/tech_data_wire.php

http://www.nature.com/articles/srep07422�

	Parametric Modeling Implementation for Kinetic Systems Simulation:
	Programmable Matter Matters

	Introduction
	Material Design
	Agile Software Development Applied to Parametric Modeling
	Methodology to Design a Workflow Framework
	Combining Imperative + Declarative Methods for Parametric Modeling
	/
	Expanding GH and Kangaroo’s Software Functionality: Pull Force Calculation Subroutine
	Conceptual Model of the System
	Case Studies
	Hexagonal Composition
	2. Membrane Composition
	Conclusion
	What Lies Ahead
	References:

